Sequential selection procedures and false discovery rate control
نویسندگان
چکیده
منابع مشابه
Procedures controlling generalized false discovery rate
Procedures controlling error rates measuring at least k false rejections, instead of at least one, can potentially increase the ability of a procedure to detect false null hypotheses in situations where one seeks to control k or more false rejections having tolerated a few of them. The k-FWER, which is the probability of at least k false rejections and generalizes the usual familywise error rat...
متن کاملPrivate False Discovery Rate Control
We provide the first differentially private algorithms for controlling the false discovery rate (FDR) in multiple hypothesis testing, with essentially no loss in power under certain conditions. Our general approach is to adapt a well-known variant of the Benjamini-Hochberg procedure (BHq), making each step differentially private. This destroys the classical proof of FDR control. To prove FDR co...
متن کاملGene Selection using Multidimensional False Discovery Rate
This paper proposes our algorithm for gene selection in microarray data analysis comparing conditions with replicates. Based on background noise computation in replicate array, this algorithm uses the global False Discovery Rate based on ‘Between’ group and ‘Within’ group comparisons of replicates to select the set of differential expressed genes. This method uses two types of statistics that l...
متن کاملOn Online Control of False Discovery Rate
Multiple hypotheses testing is a core problem in statistical inference and arises in almost every scientific field. Given a sequence of null hypotheses H(n) = (H1, . . . ,Hn), Benjamini and Hochberg [BH95] introduced the false discovery rate (FDR), which is the expected proportion of false positives among rejected null hypotheses, and proposed a testing procedure that controls FDR below a pre-a...
متن کاملFalse Discovery Rate Control With Groups.
In the context of large-scale multiple hypothesis testing, the hypotheses often possess certain group structures based on additional information such as Gene Ontology in gene expression data and phenotypes in genome-wide association studies. It is hence desirable to incorporate such information when dealing with multiplicity problems to increase statistical power. In this article, we demonstrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2015
ISSN: 1369-7412
DOI: 10.1111/rssb.12122